El análisis de un amplificador tiene como objetivo obtener su modelo equivalente en tensión o intensidad para lo cual es preciso determinar su impedancia de entrada, impedancia de salida y ganancia de tensión o intensidad. Para ello, es necesario en primer lugar obtener su circuito equivalente de alterna del amplificador y, posteriormente, sustituir el transistor por alguno de las tres posibles modelos en parámetros {H} indicados en la figura 2.9 en función de la configuración del transistor. El circuito resultante se adapta en la mayoría de los casos a los circuitos indicados en la Tabla 2.2. Esta tabla proporciona en formato tabular las características del amplificador para diferentes aproximaciones (despreciando o no ho y hr) y simplifica su resolución a una simple sustitución de los valores. Nótese que estas fórmulas son independientes de la configuración, y por consiguiente, son válidas para E-C, B-C y C-C. En la figura 2.10 se indican las ecuaciones para la configuración emisor-común con resistencia de emisor por no adaptarse a las ecuaciones de la anterior tabla. Paso 1. Análisis DC El fabricante proporciona a través de gráficas el valor de los parámetros {H} en función de la intensidad de colector; si se conoce el valor de estos parámetros no es necesario realizar este paso. La IC se calcula a partir del circuito equivalente DC. Este circuito es el resultado de eliminar (circuito abierto) los condensadores externos y anular las fuentes de alterna (fuentes de tensión se cortocircuitan y de corriente se dejan en circuito abierto). La figura 2.11.b muestra el circuito obtenido al aplicar estas transformaciones que permite calcular la IC y, por consiguiente, los parámetros {H} del transistor. Paso 2. Análisis AC En primer lugar se obtiene el circuito equivalente en alterna cortocircuitando los condensadores externos (se supone que el amplificador trabaja a frecuencias medias) y anulando las fuentes de continua (fuentes de tensión se cortocircuitan y de corriente se dejan en circuito abierto). En la figura 2.11.c se presenta el circuito resultante en alterna. Es en este momento cuando el transistor se sustituye por su modelo equivalente en parámetros {H} en función de su configuración. Si opera en E-C se utiliza directamente los parámetros proporcionado por el fabricante. En el caso de B-C y C-C se realiza las transformaciones indicadas en la tabla 2.1. La figura 2.11.d es el resultado de aplicar las anteriores indicaciones dado que el transistor opera en configuración E-C. En el análisis de este circuito se utilizará las ecuaciones contenidas en la tabla 2.2. A continuación se realiza diferentes aproximaciones que permitan comparar los resultados y estudiar el Grado de precisión. Aproximación 1 Se desprecian los parámetros hoe y hre, Es decir, hoe=hre=0. Con esta aproximación a la entrada se tiene RB| |hie~hie. El circuito resultante se muestra en la figura 2.12. Este circuito se adapta al indicado en la tabla 2.2.a y las ecuaciones que deben ser utilizadas corresponden a la columna especificada por hoe=hre=0. El resultado es Aproximación 2 Se desprecia el parámetro hre, (hre=0) y se mantiene la aproximación anterior RB| |hie~hie. El circuito es idéntico al de la figura 2.12 incluyendo hoe. En este caso deben ser utilizadas las ecuaciones de la tabla 2.2.a correspondientes a la columna hre=0. Las ecuaciones son algo más complejas que en la aproximación 1. Sin aproximación En este caso se analiza el circuito completo de la figura 2.11.d donde se tienen en cuenta todos los parámetros sin ningún tipo de aproximación. Las ecuaciones que deben ser utilizadas corresponden a la columna de la derecha de la tabla 2.2.b. Evidentemente, estas ecuaciones resultan ser mucho más complejas que en los dos casos anteriores. La tabla 2.3 resume los resultados numéricos obtenidos al analizar el circuito de la figura 2.11.a utilizando las diferentes aproximaciones. Se observa que la aproximación 2 se acerca bastante al resultado del circuito completo sin la necesidad de las ecuaciones complejas de éste último. El error cometido en la aproximación 1 puede ser demasiado elevado para muchas aplicaciones. Como conclusión, una buena aproximación en el análisis de amplificadores en E-C es despreciar el parámetro hre (aproximación 2) resultando un modelo que combina sencillez con precisión. Esta conclusión no tiene que ser extrapolable a otras configuraciones. Por último, las características de un amplificador básico dependen de la configuración con que opera el transistor. Conocer los valores típicos de una configuración son muy útiles a la hora de seleccionar una etapa para una aplicación concreta. La tabla 2.4 resume lo que se puede esperar de cada uno de los amplificadores básicos más utilizados. Así, el E-C presenta ganancias de tensión y de corriente elevadas con impedancias de entrada y salida medias. Al añadir un resistencia de emisor al E-C se aumenta la impedancia de entrada a costa de reducir la ganancia en tensión, manteniendo la ganancia en corriente. La B-C presenta una impedancia de entrada muy baja y con una ganancia en corriente ligeramente inferior a 1. La C-C tiene una impedancia de salida baja con una ganancia en tensión ligeramente inferior a 1. Rooselvet Ramírez CI 14417933 EES |
Single-Transistor and Multiple-Transistor. Amplifiers. Device Model. Approximate Analysis of Analog Circuits. Two-Port Modeling of Amplifiers. Basic Single-Transistor Amplifier. Stages. Source Degeneration. Multiple-Transistor Amplifier Stages. The CC-CE, CC-CC, and Darlington Configurations. The Cascode Configuration. The Bipolar Cascode. The MOS Cascode. The Active Cascode. The Super Source Follower. Differential Pairs
lunes, 15 de febrero de 2010
Análisis de un amplificador básico
Etiquetas:
Rooselvet Ramírez
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario