martes, 16 de febrero de 2010

In electronics, a common-base (also known as grounded-base) amplifier is one of three basic single-stage bipolar junction transistor (BJT) amplifier topologies, typically used as a current buffer or voltage amplifier. In this circuit the emitter terminal of the transistor serves as the input, the collector the output, and the base is common to both (for example, it may be tied to ground reference or a power supply rail), hence its name. The analogous field-effect transistor circuit is the common-gate amplifier.

Figure 1: Basic NPN common-base circuit (neglecting biasing details).
Applications
This arrangement is not very common in low-frequency circuits, where it is usually employed for amplifiers that require an unusually low input impedance, for example to act as a preamplifier for moving-coil microphones. However, it is popular in high-frequency amplifiers, for example for VHF and UHF, because its input capacitance does not suffer from the Miller effect, which degrades the bandwidth of the common-emitter configuration, and because of the relatively high isolation between the input and output. This high isolation means that there is little feedback from the output back to the input, leading to high stability.
This configuration is also useful as a current buffer since it has a current gain of approximately unity (see formulas below). Often a common base is used in this manner, preceded by a common-emitter stage. The combination of these two form the cascode configuration, which possesses several of the benefits of each configuration, such as high input impedance and isolation.
Overview of characteristics
Several example applications are described in detail below. A brief overview follows.
  • The amplifier input impedance Rin looking into the emitter node is very low, given approximately by
 R_{in} = r_E =  \begin{matrix} \frac {V_T} {I_E} \end{matrix}  ,
where VT is the thermal voltage and IE is the DC emitter current.
For example, for VT = 26 mV and IE = 10 mA, rather typical values, Rin = 2.6 Ω. If IE is reduced to increase Rin, there are other consequences like lower transconductance, higher output resistance and lower β that also must be considered. A practical solution to this low-input-impedance problem is to place a common-emitter stage at the input to form a cascode amplifier.
  • Because the input impedance is so low, most signal sources have larger source impedance than the common-base amplifier Rin. The consequence is that the source delivers a current to the input rather than a voltage, even if it is a voltage source. (According to Norton's theorem, this current is approximately iin = vS / RS). If the output signal also is a current, the amplifier is a current buffer and delivers the same current as is input. If the output is taken as a voltage, the amplifier is a transresistance amplifier, and delivers a voltage dependent on the load impedance, for example vout = iin RL for a resistor load RL much smaller in value than the amplifier output resistance Rout. That is, the voltage gain in this case (explained in more detail below) is:
 v_{out} = i_{in} R_L = v_s \begin{matrix} \frac {R_L}{R_S} \end{matrix} \ \ \rarr A_v =\begin{matrix}\frac {v_{out}}{v_{S}} = \frac {R_L}{R_S} \end{matrix} .
Note for source impedances such that RS >> rE the output impedance approaches Rout = RC || [ gm ( rπ || RS ) rO ].
  • For the special case of very low impedance sources, the common-base amplifier does work as a voltage amplifier, one of the examples discussed below. In this case (explained in more detail below), when RS << rE and RL << Rout, the voltage gain becomes:
A_v =\begin{matrix}\frac {v_{out}}{v_{S}} = \frac {R_L}{r_E} \approx g_m R_L\end{matrix} ,
where gm = IC / VT is the transconductance. Notice that for low source impedance, Rout = rO || RC.
  • The inclusion of rO in the hybrid-pi model predicts reverse transmission from the amplifiers output to its input, that is the amplifier is bilateral. One consequence of this is that the input/output impedance is affected by the load/source termination impedance, hence, for example, the output resistance, Rout, may vary over the range rO || RC ≤ Rout ≤ (β + 1) rO || RC depending on the source resistance, RS. The amplifier can be approximated as unilateral when neglect of rO is accurate (valid for low gains and low to moderate load resistances), simplifying the analysis. This approximation often is made in discrete designs, but may be less accurate in RF circuits, and in integrated circuit designs where active loads normally are used.
Rooselvet Ramirez        EES

No hay comentarios:

Publicar un comentario